Abstract

The large scale three-dimensional diabatic heating in the atmosphere is computed at 12 isentropic surfaces for a particular twelve hour time period. Using a method due toErtel, the continuity equation is combined with the equations of motion to give an explicit relation between diabatic heating and changes in potential vorticity and stability along isentropic surface trajectories. The results are barely of useful accuracy and reliability and this only under favorable conditions. The distribution of diabatic heating is qualitatively reasonable in the regions near the tropopause, close to the ground, above a cloud or moist layer, and within an area of general condensation. Errors and approximations make the computed values completely unreliable in areas of large anticyclonic vorticity or large baroclinity. Comparison of magnitudes with those computed from rainfall observations and with those measured directly at the earth's surface shows agreement in sign and within a factor of three in the areas of best data. The results emphasize that there are regions and periods where diabatic heating in the free atmosphere may be important in controlling atmospheric behavior. Sample calculations in one of these regions using values of diabatic heating computed by this study illustrate that this process is of comparable importance with the adiabatic process in determining vertical velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.