Abstract
A calcium/calmodulin-dependent protein kinase, which phosphorylates a synaptic vesicle-associated protein designated Synapsin I, has been shown to be present in both soluble and particulate fractions of rat brain homogenates. In the present study, the particulate activity was solubilized by washing with a low ionic strength solution, and the enzymes from the two fractions were partially purified by ion exchange chromatography and calmodulin-Sepharose affinity chromatography. By each of several criteria, the partially purified enzymes from the two sources were indistinguishable. These criteria included specificity for various substrate proteins, concentration dependence of activation by calcium and calmodulin, pH dependence, and apparent affinities for the substrates Synapsin I and ATP. The mild conditions that released the particulate enzyme indicated that it was not tightly bound to the membrane and suggested that it may exist in a dynamic equilibrium between soluble and particulate-bound states. The partially purified enzyme preparations from both the soluble and particulate fractions contained three proteins that were phosphorylated in the presence of calcium and calmodulin, a 50-kilodalton (Kd) protein and two proteins in the 60-Kd region. When compared by phosphopeptide mapping and two-dimensional gel electrophoresis, the proteins were indistinguishable from three proteins of corresponding molecular weights that were shown by Schulman and Greengard (Schulman, H., and P. Greengard (1978) Nature 271: 478-479) to be prominent substrates for calcium/calmodulin-dependent protein kinase in a crude particulate preparation from rat brain. The 50-Kd substrate was the major Coomassie blue staining protein in both partially purified enzyme preparations. The peak of this protein coincided with that of enzyme activity during DEAE-cellulose and calmodulin-Sepharose chromatography. These results suggest that the 50-Kd phosphoprotein may be an autophosphorylatable subunit of the Synapsin I Kinase or may exist in a complex with it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.