Abstract

A plasmonic switch based on the calcium-induced conformational changes of calmodulin is shown to exhibit reversible wavelength modulations in response to changing calcium concentration. The extinction maximum (lambdamax) of a localized surface plasmon resonance (LSPR) sensor functionalized with a novel calmodulin construct, cutinase-calmodulin-cutinase (CutCaMCut), reversibly shifts by 2-3 nm. A high-resolution (HR) LSPR spectrometer with a wavelength resolution (3sigma) of 1.5 x 10-2 nm was developed to detect these wavelength modulations in real-time, providing information about the dynamics and structure of the protein. The rate of conversion from open (Ca2+-bound) to closed (Ca2+-free) calmodulin is shown to be 4-fold faster than the reverse process, with a closing rate of 0.127 s-1 and opening rate of 0.034 s-1. As far as we are aware, this plasmonic switch marks the first use of LSPR spectroscopy to detect reversible conformational changes in an unlabeled protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call