Abstract

Lepidopteran insects/insect cells display 50–100 times higher radioresistance than humans, and are evolutionarily closest to mammals amongst all radioresistant organisms known. Compared to mammalian cells, Lepidopteran cells (TN-368, Sf9) display more efficient antioxidant system and DNA repair and suffer considerably less radiation-induced DNA/cytogenetic damage and apoptosis. Recent studies indicate that a considerably lower radiation-induced oxidative stress may significantly reduce macromolecular damage in Lepidopteran cells. Since nitrosative stress contributes in radiation-induced cellular damage, we investigated its nature in the γ-irradiated Sf9 cells (derived from Spodoptera frugiperda; order Lepidoptera; family Noctuidae) and compared with BMG-1 human cell line having significant NOS expression. Radiation induced considerably less ROS/RNS in Sf9 cells, which remained unchanged on treatment with NOS inhibitor l-NMMA. Surprisingly, growth of Sf9 cultures or irradiation could not induce NO or its metabolites, indicating negligible basal/radiation-induced NOS activity that remained unchanged even after supplementation with arginine. Cytosolic calcium release following high-dose (1000–2000 Gy at 61.1 cGy s −1) γ-irradiation or H 2O 2 (250 μM) treatment also failed to generate NO in Sf9 cells having high constitutive levels of calmodulin, whereas BMG-1 cells displayed considerable calcium-dependent NO generation even following 10 Gy dose. These results strongly imply the lack of calcium-mediated NOS activity in Sf9 cells. Addition of exogenous NO from GSH-NO caused considerable increase in radiation-induced apoptosis, indicating significant contribution of constitutively attenuated nitrosative stress response into the radioresistance of Lepidopteran cells. Our study demonstrates for the first time that a calcium-insensitive, attenuated nitrosative stress response may contribute significantly in the unusual radioresistance displayed by Lepidopteran insect cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call