Abstract
A system with equation and dynamic boundary condition of Cahn–Hilliard type is considered. This system comes from a derivation performed in Liu–Wu (Arch. Ration. Mech. Anal., 233:167–247, 2019) via an energetic variational approach. Actually, the related problem can be seen as a transmission problem for the phase variable in the bulk and the corresponding variable on the boundary. The asymptotic behavior as the coefficient of the surface diffusion acting on the boundary phase variable goes to 0 is investigated. By this analysis we obtain a forward-backward dynamic boundary condition at the limit. We can deal with a general class of potentials having a double-well structure, including the non-smooth double-obstacle potential. We illustrate that the limit problem is well-posed by also proving a continuous dependence estimate. Moreover, in the case when the two graphs, in the bulk and on the boundary, exhibit the same growth, we show that the solution of the limit problem is more regular and we prove an error estimate for a suitable order of the diffusion parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.