Abstract

A computer-aided design (CAD) methodology for optimizing MOS transistor current and sizing is presented where drain current ID, inversion level (represented by inversion coefficient IC), and channel length L are selected as three independent degrees of design freedom resulting in an optimized selection of channel width for layout. At a given drain current I/sub D/ in saturation, a selected MOS inversion coefficient IC and channel length L define a point on an operating plane illustrating dramatic tradeoffs in circuit performance. Operation in the region of low inversion coefficient IC and long channel length L results in optimal DC gain and matching compared to the region of high inversion coefficient IC and short channel length L where bandwidth is optimal. A design methodology is presented here to enable optimum design choices throughout the continuum of inversion level IC (weak, moderate, or strong inversion) and available channel length L. The methodology is implemented in a prototype CAD system where a graphical view permits the designer to explore optimum tradeoffs against preset goals for circuit transconductance g/sub m/, output conductance g/sub ds/, drain-source saturation voltage, gain, bandwidth, white and flicker noise, and DC matching for a 0.5-/spl mu/m CMOS process. The design methodology can be readily extended to deeper submicron MOS processes through linkage to the EKV or BSIM3 MOS models or custom model equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.