Abstract
Variable-stiffness modules add significant robustness to mechanical systems during forceful interactions with uncertain environments. Traditionally, most existing variable stiffness modules tend to be bulky by virtue of their use of solid components making them less suitable for mobile applications. In recent times, pretensioned cable-based modules have been proposed to reduce weight. While passive, these modules depend on significant internal tension to provide the desired stiffness and stiffness modulation capability tends to be limited. In this paper, we present design, analysis and testing of a cable based active variable stiffness module that can be realized to achieve a large stiffness range. Controlled changes in structural parameters (independent of cable length actuation) now permits independent modulation of the perceived stiffness with desired tension. This capability is now systematically evaluated on a hardware-in-the-loop experimental setup and results are analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.