Abstract
Salt stress restricts plant growth and productivity worldwide. Zinc finger proteins play important roles in response to various abiotic plant stresses. In this research, we identified and characterized the ZAT17 gene in Malus domestica, which encodes a C2H2-type zinc finger protein. MdZAT17 has two typical conserved zinc finger domains and an ERF-associated amphiphilic repression (EAR) motif. Promoter analysis showed that MdZAT17 contains several stress-related response elements (ABRE, CGTCA-motif, and TC-rich repeats), and qRT-PCR analysis showed that the expression level of MdZAT17 was induced by various abiotic stress treatments. The overexpression of MdZAT17 improved tolerance to salt stress in apple calli. The ectopic expression of MdZAT17 in Arabidopsis enhanced salt stress tolerance and led to lower malondialdehyde (MDA) content, lower reactive oxygen species (ROS) accumulation, and greater anthocyanin accumulation under salt stress. Moreover, the overexpression of MdZAT17 transgenic apple calli and Arabidopsis reduced the sensitivity to abscisic acid (ABA). In conclusion, our results indicate that MdZAT17 plays a positive regulatory role in salt tolerance, providing a theoretical basis for further research on its molecular mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.