Abstract

We consider the numerical solution of a fourth‐order total variation flow problem representing surface relaxation below the roughening temperature. Based on a regularization and scaling of the nonlinear fourth‐order parabolic equation, we perform an implicit discretization in time and a C0 Interior Penalty Discontinuous Galerkin (C0IPDG) discretization in space. The C0IPDG approximation can be derived from a mixed formulation involving numerical flux functions where an appropriate choice of the flux functions allows to eliminate the discrete dual variable. The fully discrete problem can be interpreted as a parameter dependent nonlinear system with the discrete time as a parameter. It is solved by a predictor corrector continuation strategy featuring an adaptive choice of the time step sizes. A documentation of numerical results is provided illustrating the performance of the C0IPDG method and the predictor corrector continuation strategy. The existence and uniqueness of a solution of the C0IPDG method will be shown in the second part of this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.