Abstract
The ubiquitously expressed c-Abl tyrosine kinase is localized to the nucleus and binds to DNA. The DNA binding activity is regulated by cdc2-mediated phosphorylation, suggesting a cell cycle function for c-Abl. Here we show that the tyrosine kinase activity of nuclear c-Abl is regulated in the cell cycle through a specific interaction with the retinoblastoma protein (RB). A domain in the C-terminus of RB, outside of the A B pocket, binds to the ATP-binding lobe of the c-Abl tyrosine kinase, resulting in kinase inhibition. The RB-c-Abl interaction is not affected by the viral oncoproteins that bind to RB. Hyperphosphorylation of RB correlates with release of c-Abl and activation of the tyrosine kinase in S phase cells. The nuclear c-Abl tyrosine kinase can enhance transcription, and this activity is inhibited by RB. Nuclear c-Abl is an S phase-activated tyrosine kinase that may participate directly in the regulation of transcription.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Cell
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.