Abstract

It is of great significance to ensure public transportation management capabilities by improving urban public transport services. One method is to solve the problems related to the quality of data submitted for public funding as well as the accuracy and transparency of the supervision and review processes; moreover, improving public-transportation-service systems is a viable method to solve such problems. With technological advancements and the application of new technologies such as automatic driving and multiple payment, it has gradually become difficult for user-data verification systems, based on the original single bus payment method, to cater to these new technologies. Diversified payment and complex management methods have highlighted the need for new verification methods. Firstly, in this paper, we constructed the Origin–Destination (OD) model of bus-passenger flows by using real-time transmission of passenger-multiple-payment data, on-board-video passenger flow detection data and vehicle real-time positioning data. On this basis, the bus waybill data of other intelligent bus systems and the wait data of bus stations were integrated, so as to establish the travel chain theory by matching passenger flow and the temporal and spatial distribution model. Then, an OD analysis of public-transport passenger flows could be carried out, with a detailed analysis of vehicle, station and line-passenger flow, and the travel characteristics of public transport passenger flow could be excavated. Then, according to the means-end chain theory, the spatiotemporal distribution of the passenger flow data was obtained to carry out an OD analysis of the passenger flow, so as to perform a refinement analysis of the vehicle, station, and passenger flow. Thereby, the characteristics of the passenger flow were explored. Subsequently, payment-authenticity-verification models were established for the data-validity assessment, video-data analysis, passenger-flow estimation, and early warnings in order to determine the authenticity of the payment data. Lastly, based on the multi-sensor passenger flow data fusion and the data authenticity verification models, combined with the application of new technologies such as the use of autonomous buses, the test was promoted. That is, by taking intelligent bus scheduling as the scenario, the research method was tested and verified with real-time passenger flow data according to historical data. The results showed that the method accurately predicted the passenger flow, and had a positive role in improving the efficiency of payment-data-authenticity verification. The application of the method can enhance the management and service quality of public transportation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call