Abstract

Anovel high-precision aptasensor of microcystin-RR (MC-RR) is developed based on a ratiometric self-powered photoelectrochemical platform. In detail, the defective MoS2/Ti3C2 nanocomposite with good photoelectric activity was designed to serve as the photoanode of the sensor for enhancing the signal and improving the detection sensitivity. In order to effectively eliminate external interferences, the key point of this ratiometric device is the introduction of the spatial-resolved technique, which includes the detection section and the reference section, generating reference signals and response signals, respectively. Moreover, output power was used as the detection signal, instead of the traditional photocurrent or photovoltage. Further, potassium persulfate was introduced as electron acceptor, which was beneficial for improving the electron transport efficiency, hindering electron-hole recombination, and significantly promoting the performance of the sensor. Finally, aptamer was adopted as recognition element to capture MC-RR molecules. The prepared sensor had a linear range from 10-12to 10-6 M, and the detection limit was 5.6 × 10-13 M (S/N = 3). It has good precision, selectivity, and sensitivity, which shows great prospects in the on-site accurate analysis of samples with high energy output in the self-powered sensing field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.