Abstract

In this paper we consider a simple cooperative network consisting of a source, a destination and a cluster of decode-and-forward half-duplex relays. At each time-slot, the source and (possibly) one of the relays transmit a packet to another relay and the destination, respectively, resulting in inter-relay interference (IRI). In this work, with the aid of buffers at the relays, we mitigate the detrimental effect of IRI through interference cancellation. More specifically, we propose the min-power scheme that minimizes the total energy expenditure per time slot under an IRI cancellation scheme. Apart from minimizing the energy expenditure, the min-power selection scheme, also provides better throughput and lower outage probability than existing works in the literature. It is the first time that interference cancellation is combined with buffer-aided relays and power adaptation to mitigate the IRI and minimize the energy expenditure. The new relay selection policy is analyzed in terms of outage probability and diversity, by modeling the evolution of the relay buffers as a Markov Chain (MC). We construct the state transition matrix of the MC, and hence obtain the steady state with which we can characterize the outage probability. The proposed scheme outperforms relevant state-of-the-art relay selection schemes in terms of throughput, diversity and energy efficiency, as demonstrated via examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.