Abstract
In this paper we devise a stabilized least-squares finite element method using the residual-free bubbles for solving the governing equations of steady magnetohydrodynamic duct flow. We convert the original system of second-order partial differential equations into a first-order system formulation by introducing two additional variables. Then the least-squares finite element method using C 0 linear elements enriched with the residual-free bubble functions for all unknowns is applied to obtain approximations to the first-order system. The most advantageous features of this approach are that the resulting linear system is symmetric and positive definite, and it is capable of resolving high gradients near the layer regions without refining the mesh. Thus, this approach is possible to obtain approximations consistent with the physical configuration of the problem even for high values of the Hartmann number. Before incoorperating the bubble functions into the global problem, we apply the Galerkin least-squares method to approximate the bubble functions that are exact solutions of the corresponding local problems on elements. Therefore, we indeed introduce a two-level finite element method consisting of a mesh for discretization and a submesh for approximating the computations of the residual-free bubble functions. Numerical results confirming theoretical findings are presented for several examples including the Shercliff problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.