Abstract
A benzotrithiophenes (BTT) based colorimetric sensor (2) was synthesized via a simple one-step reaction process, and its recognition properties towards several biologically important anions and cations were investigated by naked eye observation and spectroscopic methods of UV-vis and 1H NMR analysis in DMSO. The molar addition of anions such as F−, AcO−, and H2PO4- induced a marked red shift of the charge transfer band (Δλ=94 nm, from 440 nm to 534 nm) concomitant with a clearly visible “naked eye” detectable colorimetric activities (from orange to pink). However, the molar addition of H2PO4- did not induce significant spectral changes, compared to F− and AcO−. Furthermore, the molar addition of Hg2+ to 2 resulted in hypochromic shift at 440 nm and the eventual disappearance of a low energy band at 534 nm, concomitant with the colorimetric activities (from orange to yellow). Moreover, both spectral and color changes induced by the addition of anions (F− and AcO−) were all reversible by the molar addition of metal cations of 3d5–10. The reversibility properties triggered the logic operation studies, and, subsequently, the complementary IMP/INH logic functions based on color and spectral switching (ON/OFF) were confirmed. Conclusively, 2 can thus be utilized as a colorimetric molecular switch modulated by AcO−/MII.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.