Abstract
Faceted search is a common approach for helping users query multivariate data. While the method is found widely in contemporary tools, so far there has been little exploration of its potential to incorporate a spatial perspective. In this article we extend multivariate faceted search through the application of a brute force computational process to reveal facet combinations that have spatially-interesting results. We explore the potential utility of spatially-enhanced facet combinations in case study analyses of multivariate spatial data from learners in a massive open online course and multivariate spatial data from restaurant inspections. Spatially-enhanced facet combinations improve on ordinary faceted search by helping analysts understand which combinations have significant spatial footprints. We also show how this method can be integrated into a geovisual analytics system through a simple user interface. Finally, we draw on our case study analyses to highlight important challenges and opportunities for future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.