Abstract
In this paper, we firstly generalize the Brunn-Minkowski type inequality for Ekeland-Hofer-Zehnder symplectic capacity of bounded convex domains established by Artstein-Avidan-Ostrover in 2008 to extended symplectic capacities of bounded convex domains constructed by authors based on a class of Hamiltonian non-periodic boundary value problems recently. Then we introduce a class of non-periodic billiards in convex domains, and for them we prove some corresponding results to those for periodic billiards in convex domains obtained by Artstein-Avidan-Ostrover in 2012.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.