Abstract
For more than 150 years gravity anomalies have been used for the determination of geoidal heights, height anomalies and the external gravity field. Due to the fact that precise ellipsoidal heights could not be observed directly, traditionally a free geodetic boundary-value problem (GBVP) had to be formulated which after linearisation is related to gravity anomalies. Since nowadays the three-dimensional positions of gravity points can be determined by global navigation satellite systems very precisely, the modern formulation of the GBVP can be based on gravity disturbances which are related to a fixed GBVP using the known topographical surface of the Earth as boundary surface. The paper discusses various approaches into the solution of the fixed GBVP which after linearization corresponds to an oblique-derivative boundary-value problem for the Laplace equation. Among the analytical solution approaches a Brovar-type solution is worked out in detail, showing many similarities with respect to the classical solution of the scalar free GBVP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.