Abstract

Hedgehog (Hh) signaling is essential for normal growth, patterning, and homeostasis of many tissues in diverse organisms, and is misregulated in a variety of diseases including cancer. Cytoplasmic Hedgehog signaling is activated by multisite phosphorylation of the seven-pass transmembrane protein Smoothened (Smo) in its cytoplasmic C-terminus. Aside from a short membrane-proximal stretch, the sequence of the C-terminus is highly divergent in different phyla, and the evidence suggests that the precise mechanism of Smo activation and transduction of the signal to downstream effectors also differs. To clarify the conserved role of G-protein-coupled receptor kinases (GRKs) in Smo regulation, we mapped four clusters of phosphorylation sites in the membrane-proximal C-terminus of Drosophila Smo that are phosphorylated by Gprk2, one of the two fly GRKs. Phosphorylation at these sites enhances Smo dimerization and increases but is not essential for Smo activity. Three of these clusters overlap with regulatory phosphorylation sites in mouse Smo and are highly conserved throughout the bilaterian lineages, suggesting that they serve a common function. Consistent with this, we find that a C-terminally truncated form of Drosophila Smo consisting of just the highly conserved core, including Gprk2 regulatory sites, can recruit the downstream effector Costal-2 and activate target gene expression, in a Gprk2-dependent manner. These results indicate that GRK phosphorylation in the membrane proximal C-terminus is an evolutionarily ancient mechanism of Smo regulation, and point to a higher degree of similarity in the regulation and signaling mechanisms of bilaterian Smo proteins than has previously been recognized.

Highlights

  • The Smoothened (Smo) family of seven-pass transmembrane proteins initiate cytoplasmic Hedgehog (Hh) signaling

  • Neither the Smo autoinhibitory domain (SAID) nor the critical Protein kinase A (PKA) sites in Drosophila Smo are conserved in vertebrate Smo proteins; instead G-protein-coupled receptor kinase (GRK) 2 and Casein kinase I (CKI) are the principal kinases that activate vertebrate Smo proteins by phosphorylating them at a different set of sites [2]

  • Even when using a PKA- and CKI-phosphomimetic form of Smo, SmoSD [5] to circumvent the effects of gprk2 depletion on cyclic AMP (cAMP) levels, there was a substantial reduction of Smo phosphorylation upon dsRNA-mediated depletion of Gprk2 that could not be accounted for by the GPS sites (Figure S1A)

Read more

Summary

Introduction

The Smoothened (Smo) family of seven-pass transmembrane proteins initiate cytoplasmic Hedgehog (Hh) signaling. Smo undergoes a conformational change, dimerizes, and accumulates at the plasma membrane (Drosophila) or primary cilium (mammals), and activates downstream signaling, leading to stabilization of Ci/Gli family transcription factors and Hh target gene expression [1,2,3]. The more distal C-terminus, in many cases hundreds of amino acids long, is completely divergent in different phyla. Because they target different portions of the C-terminus, the phosphorylation mechanisms regulating Smo differ fundamentally between invertebrates and vertebrates. In Drosophila, phosphorylation at three clusters of Protein kinase A (PKA) and Casein kinase I (CKI) sites located in the Smo autoinhibitory domain (SAID) is necessary and sufficient for activation [5,6,7]. Neither the SAID nor the critical PKA sites in Drosophila Smo are conserved in vertebrate Smo proteins; instead G-protein-coupled receptor kinase (GRK) 2 and CKI are the principal kinases that activate vertebrate Smo proteins by phosphorylating them at a different set of sites [2]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.