Abstract
DNA-modified particles are used extensively for applications in sensing, material science, and molecular biology. The performance of such DNA-modified particles is greatly dependent on the degree of surface coverage, but existing methods for quantitation can only be employed for certain particle compositions and/or conjugation chemistries. We have developed a simple and broadly applicable exonuclease III (Exo III) digestion assay based on the cleavage of phosphodiester bonds-a universal feature of DNA-modified particles-to accurately quantify DNA probe surface coverage on diverse, commonly used particles of different compositions, conjugation chemistries, and sizes. Our assay utilizes particle-conjugated, fluorophore-labeled probes that incorporate two abasic sites; these probes are hybridized to a complementary DNA (cDNA) strand, and quantitation is achieved via cleavage and digestion of surface-bound probe DNA via Exo III's apurinic endonucleolytic and exonucleolytic activities. The presence of the two abasic sites in the probe greatly speeds up the enzymatic reaction without altering the packing density of the probes on the particles. Probe digestion releases a signal-generating fluorophore and liberates the intact cDNA strand to start a new cycle of hybridization and digestion, until all fluorophore tags have been released. Since the molar ratio of fluorophore to immobilized DNA is 1:1, DNA surface coverage can be determined accurately based on the complete release of fluorophores. Our method delivers accurate, rapid, and reproducible quantitation of thiolated DNA on the surface of gold nanoparticles, and also performs equally well with other conjugation chemistries, substrates, and particle sizes, and thus offers a broadly useful assay for quantitation of DNA surface coverage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.