Abstract

A prerequisite for sequencing large genomes is to obtain 30- to 150-kb genomic DNA fragments in adequate quantity. Previously, we developed a system which enables one to excise and amplify in vivo such segments directly from the Escherichia coli genome. This system, which employed the yeast Flp/FRTelements for excision and the plasmid R6K-based replication machinery for DNA amplification, permits one to bypass conventional cloning [Pósfai et al. (1994) Nucleic Acids Res. 22, 2392–2398]. To extend the applicability of such a system to many species, we describe here a broad-host-range (bhr) system in which the amplification of the excised DNA fragment depends on the oriV element and the Rep (TrfA) protein from the promiscuous RK2/RP4 plasmid. We have constructed insertion plasmids which carry the FRT and oriV sites. To introduce such plasmids into the appropriate position in the host genome, a short genomic sequence homologous to this position was cloned into the multiple cloning site (MCS) of the FRT/oriVinsertion plasmid and then recombined into this position in the genome by RecA-mediated recombination. In such a manner, many strains with single FRT/oriV insertions at various positions could be generated. Subsequent genetic crosses or phage transduction allow two neighboring FRT/oriVsites (less than 150 kb apart) to be brought into a single genome. In the present report, the lacZ and phoB sites, which are 51 kb apart in the E. coli genome, were used for the introduction of the FRT/oriV sites. To deliver the Flp (excision) and Rep (amplification) functions in trans, the yeast FLP and RK2 plasmid trfA genes were placed under the control of the P tet promoter/operator which is tightly regulated by the TetR repressor. The addition of heated chlortetracycline (cTc) inactivates TetR, turning on the synthesis of Flp and TrfA, which respectively, execute (i) excision of the 51-kb genomic segment between the two FRTsites (in lacZ and in phoB), and ( ii) its amplification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.