Abstract
We extend the broadened classical master equation (bCME) approach [W. Dou and J. E. Subotnik, J. Chem. Phys. 144, 024116 (2016)] to the case of two electrodes, such that we may now calculate non-equilibrium transport properties when molecules come near metal surfaces and there is both strong electron-nuclear and strong metal-molecule coupling. By comparing against a numerically exact solution, we show that the bCME usually works very well, provided that the temperature is high enough that a classical treatment of nuclear motion is valid. Finally, in the low temperature (quantum) regime, we suggest a means to incorporate broadening effects in the quantum master equation (QME). This bQME works well for fairly low temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.