Abstract
A microwave test system to measure the complex permittivity of solid and powder materials as a function of temperature has been developed. The system is based on a TM0n0 multi-mode cylindrical cavity with a slotting structure, which provides purer test modes compared to a traditional cavity. To ensure the safety, effectiveness, and longevity, heating and testing are carried out separately and the sample can move between two functional areas through an Alundum tube. Induction heating and a pneumatic platform are employed to, respectively, shorten the heating and cooling time of the sample. The single trigger function of the vector network analyzer is added to test software to suppress the drift of the resonance peak during testing. Complex permittivity is calculated by the rigorous field theoretical solution considering multilayer media loading. The variation of the cavity equivalent radius caused by the sample insertion holes is discussed in detail, and its influence to the test result is analyzed. The calibration method for the complex permittivity of the Alundum tube and quartz vial (for loading powder sample), which vary with the temperature, is given. The feasibility of the system has been verified by measuring different samples in a wide range of relative permittivity and loss tangent, and variable-temperature test results of fused quartz and SiO2 powder up to 1500 °C are compared with published data. The results indicate that the presented system is reliable and accurate. The stability of the system is verified by repeated and long-term tests, and error analysis is presented to estimate the error incurred due to the uncertainties in different error sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.