Abstract

Information and communications technologies (ICTs) are gaining importance in developing countries. Power-line network is a potential infrastructure for ICT services provision. Power-lines are highly interconnected network with stochastic variation in number of branches. Under such distributed network conditions the design of a broadband power-line communication (BPLC) system is a challenge. In this paper a case study of an actual power-line network, representative of a low-voltage BPLC channel in Dar es Salaam, Tanzania is considered. We shall investigate the performance of such a low-voltage channel that uses orthogonal frequency division multiplexing (OFDM) technique with binary phase shift keying (BPSK) modulation scheme for communication. For sensitivity analysis, three different transmitter locations were chosen and receiver points were varied to identify the possible degraded performance scenarios. Analysis show that in the frequency bands of 100 MHz, the channel delay spread for such networks is about 4 mus, giving a maximum number of subchannels 4096 with 512 cyclic prefix. To improve the degraded performance scenarios, the concatenated Reed Solomon outer code with punctured convolution inner code was applied to the network. It was found that when the branches were terminated by its corresponding characteristic impedances the performance is improved by 10-20 dB compared to a corresponding uncoded system. On the contrary for a coded system when the branches were terminated either in low or higher impedances compared to branch characteristic impedances the improvement was greater than 2-15 dB. This study demonstrates that the specification proposed by IEEE-802.16 broadband wireless access working groups can be used for performance improvement of distributed low-voltage systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call