Abstract

Carbon-based nanomaterials such as carbon nanotubes (CNTs) and graphene have great potential for high-performance all-carbon photodetectors due to their unique optical and electronic properties. Here, we assemble a hybrid CNT/graphene film prepared by depositing CNTs on a single layer graphene with a side-polished optical fiber to achieve a novel all-fiber integrated photodetector. Because CNTs strongly enhanced the interaction between graphene and the fiber mode, the photodetector shows an extra-high photoresponsivity over the visible and infrared region. Especially at 1550 nm, the photoresponsivity is found to be ∼1.48 × 105 A W-1, which is 6.5 times larger than those of photodetectors without CNTs. These findings provide a highly versatile, reproducible, and low-cost platform to integrate novel zero-, one-, and two-dimensional materials into optical fibers and deliver more sophisticated functionalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.