Abstract
In this work we have fabricated a glutathione-S-transferase based amperometric biosensor for pesticides by immobilizing the enzyme on platinum electrode using graphene oxide-gelatin matrix, evaluated various biosensor parameters, applied the same for detection and quantification of four different classes of pesticides and validated the biosensor results with GC–MS analysis. The enzyme immobilization was confirmed through scanning electron microscopy, electrochemical impedance spectroscopy, cyclic voltammetry and chronoamperometry. The apparent Michaelis-Menten constant for the immobilized glutathione-S-transferase in the said matrix was found to be 0.083 mmol L−1 and 0.15 mmol L−1 respectively for glutathione and 1-Chloro-2,4-dinitrobenzene. Substrate specificity found to be 2.56 × 107 s−1 M−1 for glutathione and 2.15 × 107 s−1 M−1 for 1-Chloro-2,4-dinitrobenzene. Pesticide analysis was done in 25% methanol solution. The biosensor is a promising new tool for pesticide analysis as it can be applied for analysis of a broad spectrum of pesticides covering at least six different classes namely - benzamidazole, organochlorine, organothiophosphate, organocarbamate, polyphenol and pyrethroid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.