Abstract

Glycoside hydrolases (GHs) are a diverse group of enzymes that catalyze the hydrolysis of glycosidic bonds. The Carbohydrate-Active enZymes (CAZy) classification organizes GHs into families based on sequence data and function, with fewer than 1% of the predicted proteins characterized biochemically. Consideration of genomic context can provide clues to infer possible enzyme activities for proteins of unknown function. We used the MultiGeneBLAST tool to discover a gene cluster in Marinovum sp., a member of the marine Roseobacter clade, that encodes homologues of enzymes belonging to the sulfoquinovose monooxygenase pathway for sulfosugar catabolism. This cluster lacks a gene encoding a classical family GH31 sulfoquinovosidase candidate, but which instead includes an uncharacterized family GH13 protein (MsGH13) that we hypothesized could be a non-classical sulfoquinovosidase. Surprisingly, recombinant MsGH13 lacks sulfoquinovosidase activity and is a broad-spectrum α-glucosidase that is active on a diverse array of α-linked disaccharides, including maltose, sucrose, nigerose, trehalose, isomaltose, and kojibiose. Using AlphaFold, a 3D model for the MsGH13 enzyme was constructed that predicted its active site shared close similarity with an α-glucosidase from Halomonas sp. H11 of the same GH13 subfamily that shows narrower substrate specificity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.