Abstract

AbstractA mononuclear FeII complex, prepared with a Brønsted diacid ligand, H2L (H2L=2‐[5‐phenyl‐1H‐pyrazole‐3‐yl] 6‐benzimidazole pyridine), shows switchable physical properties and was isolated in five different electronic states. The spin crossover (SCO) complex, [FeII(H2L)2](BF4)2 (1A), exhibits abrupt spin transition at T1/2=258 K, and treatment with base yields a deprotonated analogue [FeII(HL)2] (1B), which shows gradual SCO above 350 K. A range of FeIII analogues were also characterized. [FeIII(HL)(H2L)](BF4)Cl (1C) has an S=5/2 spin state, while the deprotonated complexes [FeIII(L)(HL)], (1D), and (TEA)[FeIII(L)2], (1E) exist in the low‐spin S=1/2 state. The electronic properties of the five complexes were fully characterized and we demonstrate in situ switching between multiple states in both solution and the solid‐state. The versatility of this simple mononuclear system illustrates how proton donor/acceptor ligands can vastly increase the range of accessible states in switchable molecular devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.