Abstract

We expose the statistical foundations of deep learning with the goal of facilitating conversation between the deep learning and statistics communities. We highlight core themes at the intersection; summarize key neural models, such as feedforward neural networks, sequential neural networks, and neural latent variable models; and link these ideas to their roots in probability and statistics. We also highlight research directions in deep learning where there are opportunities for statistical contributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.