Abstract

Ferritic/martensitic 9Cr-1Mo-V-Nb steel also designated as ASTM A335 used in construction of several components of power plants operating in temperature range of 600–650°C. In present investigation, dissimilar weld joint of P91 and P92 steel were prepared using the autogenous tungsten inert gas (A-TIG) welding and multi-pass gas tungsten arc welding (GTAW) process. A comparative study was performed on evolution of δ-ferrite patches in weld fusion zone and heat affected zones (HAZs) of welded joints. The evolution of δ-ferrite patches was studied in as-welded and post-weld heat treatment (PWHT) condition. PWHT was carried out at 760°C for tempering time of 2h and 6h, for both A-TIG and GTA weld joints. It was observed that presence of higher content of ferrite stabilizer in P92 steel promote the formation of δ-ferrite patches in weld fusion zone as well as HAZs. To study the effect of welding process and PWHT, Charpy V impact energy and microhardness tests were performed. For microstructure characterization, field-emission scanning electron microscope (FESEM) and optical microscope were utilized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call