Abstract
Offshore wind turbine requires more systematized operation and maintenance strategies to ensure systems are harmless, profitable and cost-effective. Condition monitoring and fault diagnostic systems ominously plays an important role in offshore wind turbine in order to cut down maintenance and operational costs. Condition monitoring techniques which describing complex faults and failure mode types and their generated traceable signs to provide cost-effective condition monitoring and predictive maintenance and their diagnostic schemes. Continuously monitor the condition of critical parts are the most efficient way to improve reliability of wind turbine. Implementation of Condition Based Maintenance (CBM) strategy provides right time maintenance decisions and Predictive Health Monitoring (PHM) data to overcome breakdown and machine downtime. Fault detection and CBM implementation is challenging for off shore wind farm due to the complexity of remote sensing, components health and predictive assessment, data collection, data analysis, data handling, state recognition, and advisory decision. The rapid expansion of wind farms, advanced technological development and harsh installation sites needs a successful CM approach. This paper aims to review brief status of recent development of CM techniques and focusing with major faults takes place in gear box and bearing, rotor and blade, pitch, yaw and tower system and generator and control system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.