Abstract

AbstractTraditional digital circuits use binary logic for implementation which requires more number of data lines to carry information. In contrast to binary, multiple-valued logic (MVL), digital circuits require less number of data lines to represent information. MVL uses more than two levels to represent a number; thereby reducing the number of interconnects. One of its kind is ternary logic, (known as radix-3 system) and uses three different voltage levels, whereas the other quaternary logic (radix-4 system) uses four different voltage levels to represent a number. Various digital circuits are implemented using MVL which potentially reduces the chip area, power consumption, and propagation delay. This article discusses about fundamental concepts of ternary, quaternary system and reviews some of arithmetic and logic circuits using ternary and quaternary logic. This paper also presents different methodologies used to implement arithmetic and logic operations using MVL. It is found that, due to the effective utilization of interconnects, MVL digital circuits provide better performance over binary digital circuits in terms of area, power, and delay.KeywordsNumber systemArithmetic and Logic circuitsChip areaMultiple-Valued Logic (MVL)Quaternary logicTernary logicTiming delayVLSI

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call