Abstract

LGAD sensors will be employed in the CMS MTD and ATLAS HGTD upgrades to mitigate the high levels of pile-up expected in the High Luminosity phase of the LHC. Over the last several years, much attention has been focused on designing radiation tolerant gain implants to ensure that these sensors survive the expected fluences, (more than 1–2 × 1015 neq/cm2). However, in test beams with protons and a fs-laser, highly irradiated LGADs operated at a high voltage, have been seen to exhibit violent burn-out events that render the sensors inoperable. This paper will focus on the critical electric field and accordingly the bias thresholds to mitigate the risk of Single Event Burnout (SEB).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.