Abstract

Meshchersky’s equation is a basic differential equation in the mechanics of variable-mass particles. This note particularly considers the case in which a one-dimensional and position-dependent mass particle is under the action of a potential force. The absolute velocity of mass ejection (or accretion) is supposed to be a linear function of the particle velocity. Within the formulation of the inverse problem of Lagrangian mechanics, an analytical solution of Meshchersky’s equation is here derived. The solution method follows from applying the concept of constant of motion of an extremum problem, which is a fundamental ground in the theory of invariant variational principles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.