Abstract
A key question in both wound healing and fibrosis is the trigger for the initial formation of scar tissue. To help form scar tissue, circulating monocytes enter the tissue and differentiate into fibroblast-like cells called fibrocytes, but fibrocyte differentiation is strongly inhibited by the plasma protein serum amyloid P (SAP), and healthy tissues contain very few fibrocytes. In wounds and fibrotic lesions, mast cells degranulate to release tryptase, and thrombin mediates blood clotting in early wounds. Tryptase and thrombin are upregulated in wound healing and fibrotic lesions, and inhibition of these proteases attenuates fibrosis. We report that tryptase and thrombin potentiate human fibrocyte differentiation at biologically relevant concentrations and exposure times, even in the presence of concentrations of serum and SAP that normally completely inhibit fibrocyte differentiation. Fibrocyte potentiation by thrombin and tryptase is mediated by protease-activated receptors 1 and 2, respectively. Together, these results suggest that tryptase and thrombin may be an initial trigger to override SAP inhibition of fibrocyte differentiation to initiate scar tissue formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.