Abstract

Gliclazide, a sulfonylurea widely used for treatment of diabetes mellitus, is known to scavenge reactive oxygen species. To clarify whether its antioxidative ability interferes with the glycation processes, we incubated bovine serum albumin (BSA) with 1 M glucose or 1 m M methylglyoxal, in the presence or absence of gliclazide, and observed the formation of advanced glycation end products (AGEs). AGE production was assessed by AGE-specific fluorescence, an enzyme-linked immunosorbent assay (ELISA), and Western blotting. The fluorescence at excitation/emission wavelengths of 320/383 nm and 335/385 nm was definitely increased by incubating BSA with 1 M glucose or 1 m M methylglyoxal, and 1 m M gliclazide significantly blunted the fluorescent augmentation, in both wavelengths, in a dose-dependent fashion. Gliclazide almost equaled to aminoguanidine, a putative antiglycation agent, in the inhibitory effect on the glucose-induced fluorescence, while the methylglyoxal-derived fluorescent formation was less suppressed by gliclazide than by aminoguanidine. The AGE concentrations determined by ELISA showed similar results. Incubation of BSA with 1 M glucose or 1 m M methylglyoxal yielded an apparent increase in carboxymethyllysine or argpyrimidine. Both AGEs were significantly lowered by 1 m M gliclazide and a reduction of glucose-derived carboxymethyllysine was comparable to that caused by aminoguanidine. The results of Western blotting supported the findings in ELISA. To our knowledge, the present study provides the first evidence of the antiglycation effect of gliclazide on in vitro AGE formation from glucose and methylglyoxal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.