Abstract

We give an explanation for the origin of various properties observed in local infrared galaxies and make predictions for galaxy counts and cosmic background radiation (CBR) using a new model extended from that for optical/near-infrared galaxies. Important new characteristics of this study are that (1) mass scale dependence of dust extinction is introduced based on the size-luminosity relation of optical galaxies and that (2) the large-grain dust temperature Tdust is calculated based on a physical consideration for energy balance rather than by using the empirical relation between Tdust and total infrared luminosity LIR found in local galaxies, which has been employed in most previous works. Consequently, the local properties of infrared galaxies, i.e., optical/infrared luminosity ratios, LIR-Tdust correlation, and infrared luminosity function are outputs predicted by the model, while these have been inputs in a number of previous models. Our model indeed reproduces these local properties reasonably well. Then we make predictions for faint infrared counts (in 15, 60, 90, 170, 450, and 850 μm) and CBR using this model. We found results considerably different from those of most previous works based on the empirical LIR-Tdust relation; especially, it is shown that the dust temperature of starbursting primordial elliptical galaxies is expected to be very high (40-80 K), as often seen in starburst galaxies or ultraluminous infrared galaxies in the local and high-z universe. This indicates that intense starbursts of forming elliptical galaxies should have occurred at z ~ 2-3, in contrast to the previous results that significant starbursts beyond z ~ 1 tend to overproduce the far-infrared (FIR) CBR detected by COBE/FIRAS. On the other hand, our model predicts that the mid-infrared (MIR) flux from warm/nonequilibrium dust is relatively weak in such galaxies making FIR CBR, and this effect reconciles the prima facie conflict between the upper limit on MIR CBR from TeV gamma-ray observations and the COBE detections of FIR CBR. The intergalactic optical depth of TeV gamma rays based on our model is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.