Abstract

In order to overcome the spectral interference of the conventional Fourier transform in the International Electrotechnical Commission framework, this paper introduces a Bregman-split-based compressive sensing (BSCS) method to estimate the Taylor–Fourier coefficients in a multi-frequency dynamic phasor model. Considering the DDC component estimation, this paper transforms the phasor problem into a compressive sensing model based on the regularity and sparsity of the dynamic harmonic signal distribution. It then derives an optimized hybrid regularization algorithm with the Bregman split method to reconstruct the dynamic phasor estimation. The accuracy of the model was verified by using the cross entropy to measure the distribution differences of values. Composite tests derived from the dynamic phasor test conditions were then used to verify the potentialities of the BSCS method. Simulation results show that the algorithm can alleviate the impact of dynamic signals on phasor estimation and significantly improve the estimation accuracy, which provides a theoretical basis for P-class phasor measurement units (PMUs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.