Abstract

We introduce Bella, a locally superlinearly convergent Bregman forward backward splitting method for minimizing the sum of two nonconvex functions, one of which satisfying a relative smoothness condition and the other one possibly nonsmooth. A key tool of our methodology is the Bregman forward-backward envelope (BFBE), an exact and continuous penalty function with favorable first- and second-order properties, and enjoying a nonlinear error bound when the objective function satisfies a Lojasiewicz-type property. The proposed algorithm is of linesearch type over the BFBE along candidate update directions, and converges subsequentially to stationary points, globally under a KL condition, and owing to the given nonlinear error bound can attain superlinear convergence rates even when the limit point is a nonisolated minimum, provided the directions are suitably selected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.