Abstract
This paper presents and evaluates a breast-specific magnetic resonance guided focused ultrasound (MRgFUS) system. A first-in-human evaluation demonstrates the novel hardware, a sophisticated tumor targeting algorithm and a volumetric magnetic resonance imaging (MRI) protocol. At the time of submission, N = 10 patients with non-palpable T0 stage breast cancer have been treated with the breast MRgFUS system. The described tumor targeting algorithm is evaluated both with a phantom test and in vivo during the breast MRgFUS treatments. Treatments were planned and monitored using volumetric MR-acoustic radiation force imaging (MR-ARFI) and temperature imaging (MRTI). Successful technical treatments were achieved in 80 % of the patients. All patients underwent the treatment with no sedation and 60 % of participants had analgesic support. The total MR treatment time ranged from 73 to 114 minutes. Mean error between desired and achieved targeting in a phantom was 2.9 ±1.8mm while 6.2 ±1.9mm was achieved in patient studies, assessed either with MRTI or MR-ARFI measurements. MRTI and MR-ARFI were successful in 60 % and 70 % of patients, respectively. The targeting accuracy allows the accurate placement of the focal spot using electronic steering capabilities of the transducer. The use of both volumetric MRTI and MR-ARFI provides complementary treatment planning and monitoring information during the treatment, allowing the treatment of all breast anatomies, including homogeneously fatty breasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.