Abstract

This study sought to identify molecular subtypes of breast cancer (BC) and develop a breast cancer stem cells (BCSCs)-related gene risk score for predicting prognosis and assessing the potential for immunotherapy. Unsupervised clustering based on prognostic BCSC genes was used to determine BC molecular subtypes. Core genes of BC subtypes identified by non-negative matrix factorization algorithm (NMF) were screened using weighted gene co-expression network analysis (WGCNA). A risk model based on prognostic BCSC genes was constructed using machine learning as well as LASSO regression and multivariate Cox regression. The tumor microenvironment and immune infiltration were analyzed using ESTIMATE and CIBERSORT, respectively. A CD79A+CD24-PANCK+-BCSC subpopulation was identified and its spatial relationship with microenvironmental immune response state was evaluated by multiplexed quantitative immunofluorescence (QIF) and TissueFAXS Cytometry. We identified two distinct molecular subtypes, with Cluster 1 displaying better prognosis and enhanced immune response. The constructed risk model involving ten BCSC genes could effectively stratify patients into subgroups with different survival, immune cell abundance, and response to immunotherapy. In subsequent QIF validation involving 267 patients, we demonstrated the existence of CD79A+CD24-PANCK+-BCSC in BC tissues and revealed that this BCSC subtype located close to exhausted CD8+FOXP3+ T cells. Furthermore, both the densities of CD79A+CD24-PANCK+-BCSCs and CD8+FOXP3+T cells were positively correlated with poor survival. These findings highlight the importance of BCSCs in prognosis and reshaping the immune microenvironment, which may provide an option to improve outcomes for patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call