Abstract

Transcription elongation has emerged as a regulatory hub in gene expression of metazoans. A major control point occurs during early elongation before RNA polymerase II (Pol II) is released into productive elongation. Prior research has linked BRD4 with transcription elongation. Here, we use rapid BET protein and BRD4-selective degradation along with quantitative genome-wide approaches to investigate direct functions of BRD4 in Pol II transcription regulation. Notably, as an immediate consequence of acute BRD4 loss, promoter-proximal pause release is impaired, and transcriptionally engaged Pol II past this checkpoint undergoes readthrough transcription. An integrated proteome-wide analysis uncovers elongation and 3'-RNA processing factors as core BRD4 interactors. BRD4 ablation disrupts the recruitment of general 3'-RNA processing factors at the 5'-control region, which correlates with RNA cleavage and termination defects. These studies, performed in human cells, reveal a BRD4-mediated checkpoint and begin to establish a molecular link between 5'-elongation control and 3'-RNA processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.