Abstract
Raihan, Md. Mohsin Sarker Islam, Muhammad Muinul Fairoz, Fariha Shams, Abdullah BinIn the prevailing COVID-19 pandemic, accurate diagnosis plays a vital role in preventing the mass transmission of the SARS-CoV-2 virus. Especially patients with pneumonia need correct diagnosis for proper treatment of their respiratory distress. However, the current standard diagnosis method, RT-PCR testing has a significant false negative and false positive rate. As alternatives, diagnosis methods based on artificial intelligence can be applied for faster and more accurate diagnosis. Currently, various machine learning and deep learning techniques are being researched on to develop better COVID-19 diagnosis system. However, these approaches do not consider the uncertainty in data. Deep learning approaches use backpropagation. It is an unexplainable black box approach and is prone to problems like catastrophic forgetting. This article applies a belief rule-based expert system (BRBES) for diagnosis of COVID-19 on hematological data and CT scan data of lung tissue infection of adult pneumonia patients. The system is optimized with nature-inspired optimization algorithm—BRBES-based adaptive differential evolution (BRBaDE). This model has been evaluated on a real-world dataset of COVID-19 patients published in a previous work. Also, performance of the BRBaDE has been compared with BRBES optimized with genetic algorithm and MATLAB’s fmincon function where BRBaDE outperformed genetic algorithm and fmincon and showed best accuracy of 73.91%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.