Abstract

A new branched-pore adsorption model has been developed using an external mass transfer coefficient, Kf, an effective diffusivity, Deff, a lumped micropore diffusion rate parameter, Kb, and the fraction of macropores, f, to describe sorption kinetic data from initial adsorbent-adsorbate contact to the long-term adsorption phase. This model has been applied to an environmental pollution problem—the removal of two dyes, Acid Blue 80 (AB80) and Acid Red 114 (AR114), by sorption on activated carbon. A computer program has been used to generate theoretical concentration-time curves and the four mass transfer kinetic parameters adjusted so that the model achieves a close fit to the experimental data. The best fit values of the parameters have been determined for different initial dye concentrations and carbon masses. Since the model is specifically applicable to fixed constant values of these four parameters, a further and key application of this project is to see if single constant values of these parameters can be used to describe all the experimental concentration-time decay curves for one dye-carbon system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call