Abstract
We are interested in the solution of the maximumk-balanced subgraph problem. Let G=(V,E,s) be a signed graph and k a positive scalar. A signed graph is k-balanced if V can be partitioned into at most k sets in such a way that positive edges are found only within the sets and negative edges go between sets. The maximum k-balanced subgraph problem is the problem of finding a subgraph of G that is k-balanced and maximum according to the number of vertices. This problem has applications in clustering problems appearing in collaborative vs conflicting environments. The particular case k=2 yields the problem of finding a maximum balanced subgraph in a signed graph and its exact solution has been addressed before in the literature. In this paper, we provide a representatives formulation for the general problem and present a partial description of the associated polytope, including the introduction of strengthening families of valid inequalities. A branch-and-cut algorithm is described for finding an optimal solution to the problem. An ILS metaheuristic is implemented for providing primal bounds for this exact method and a branching rule strategy is proposed for the representatives formulation. Computational experiments, carried out over a set of random instances and on a set of instances from an application, show the effectiveness of the valid inequalities and strategies adopted in this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.