Abstract

In this paper, we study a multi-periodic production planning problem in agriculture. This problem belongs to the class of crop rotation planning problems, which have received increased attention in the literature in recent years. Crop cultivation and fallow periods must be scheduled on land plots over a given time horizon so as to minimize the total surface area of land used, while satisfying crop demands every period. This problem is proven strongly NP-hard. We propose a 0-1 linear programming compact formulation based on crop-sequence graphs. An extended formulation is then provided with a polynomial-time pricing problem, and a Branch-and-Price-and-Cut (BPC) algorithm is presented with adapted branching rules and cutting planes. The numerical experiments on instances varying the number of crops, periods and plots show the e ffectiveness of the BPC for the extended formulation compared to solving the compact formulation, even though these two formulations have the same linear relaxation bound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.