Abstract

We exactly solve the $${\mathcal {NP}}$$-hard combinatorial optimization problem of finding a minimum cardinality vertex separator with k (or arbitrarily many) capacitated shores in a hypergraph. We present an exponential size integer programming formulation which we solve by branch-and-price. The pricing problem, an interesting optimization problem on its own, has a decomposable structure that we exploit in preprocessing. We perform an extensive computational study, in particular on hypergraphs coming from the application of re-arranging a matrix into single-bordered block-diagonal form. Our experimental results show that our proposal complements the previous exact approaches in terms of applicability for larger k, and significantly outperforms them in the case $$k=\infty $$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.