Abstract

In this paper, we propose a branch-and-cut algorithm for solving a nonconvex quadratically constrained quadratic programming (QCQP) problem with a nonempty bounded feasible domain. The problem is first transformed into a linear conic programming problem, and then approximated by semidefinite programming problems over different intervals. In order to improve the lower bounds, polar cuts, generated from corresponding cut-generation problems, are embedded in a branch-and-cut algorithm to yield a globally --optimal solution (with respect to feasibility and optimality, respectively) in a finite number of iterations. To enhance the computational speed, an adaptive branch-and-cut rule is adopted. Numerical experiments indicate that the number of explored nodes required for solving QCQP problems can be significantly reduced by employing the proposed polar cuts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call