Abstract

This paper presents a branch-and-cut method for two stage Stochastic Mixed-Integer Programming (SMIP) problems with continuous first-stage variables. This method is derived based on disjunctive decomposition (D2) for SMIP, an approach in which disjunctive programming is used to derive valid inequalities for SMIP. The novelty of the proposed method derives from branching on the first-stage continuous domain while the branch-and-bound process is guided by the disjunction variables in the second-stage. Finite convergence of the algorithm for mixed-binary second stage is established and a numerical example to illustrate the new method is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.