Abstract

An algorithm is described for solving large-scale instances of the Symmetric Traveling Salesman Problem (STSP) to optimality. The core of the algorithm is a “polyhedral” cutting-plane procedure that exploits a subset of the system of linear inequalities defining the convex hull of the incidence vectors of the hamiltonian cycles of a complete graph. The cuts are generated by several identification procedures that have been described in a companion paper. Whenever the cutting-plane procedure does not terminate with an optimal solution the algorithm uses a tree-search strategy that, as opposed to branch-and-bound, keeps on producing cuts after branching. The algorithm has been implemented in FORTRAN. Two different linear programming (LP) packages have been used as the LP solver. The implementation of the algorithm and the interface with one of the LP solvers is described in sufficient detail to permit the replication of our experiments. Computational results are reported with up to 42 STSPs with sizes rangin...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.